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Anomalous delay in wave propagation and tunneling:
A transition-elements analysis of the traversal time
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An alternative model for near-field propagation and optical tunneling is proposed following the lines of the
path-integral method developed by Feynman, and in particular by using a transition-elements analysis. Such a
model was able to account for the frequency dependency of delay-time results of an experiment involving
microwave propagation in the near field using two horn antephaRanfagniet al, Phys. Rev. B66, 036111
(2002]. Furthermore, this approach is also capable of interpreting delay-time results as a function of the barrier
width in a frustrated total internal reflection experiment performed at the microwave scale and in the optical
region.
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In a previous pap€rl], we reported on anomalous delay- whose connection with quantum-mechanical equations has
time results in a microwave propagation experiment, whictbeen well establishefi7]. We have to note, however, that
demonstrated a superluminal behavior strongly dependent omhen we say “dissipation” in tunneling—but also in near-
the frequency. These results were interpreted in the framdield situations—we are not dealing with a true dissipation,
work of a stochastic model and, in particular, according to éut rather with an imaginary quantity introduced in order to
transition-elements analysis whose results were anticipateabtain the analytical continuation of the wave equatisee
as Eq.(6) in Ref.[1]. The purpose of this work is to elucidate below).
the attainment of such result and to demonstrate its capability In the following, we derive an expression for the real part
of interpreting other traversal-time data as the ones obtainedf the transition element of the time, which can be inter-
in tunneling experiments. preted as the traversal-time duration. Indeed, we recover an

First, let us briefly recall the concept of transition ele- expression, which is very similar to the one already obtained
ments. Feynman and Hiblp2] introduced the transition ele- by a stochastic approach to the problé8). An approach,
ments with a general type of notation, and developed interwhich supplies for the delay time a complex quantity, the
esting relations between them: some of these relations, thegal part of which is directly related to the measurements,
stated, might well serve to generalize some laws of quanturwhile the imaginary part is an “apparent time,” which can be
mechanics. As noticed in Ref2], “it is difficult to under-  related to the attenuation of the waves, corresponding to
stand transition elements on the level of intuitive physics.”semiclassical evaluatiofi9]. On this basis, a plausible inter-
The simplest way is to consider them as weighted averagepretation was given of delay-time results in near-field propa-
where the weighting function exi®%), Sbeing the action, is gation as a function of frequendyl] and barrier width in
a complex quantity, so the result too is complex, and it is notnicrowave and optical frustrated total internal reflection ex-
an “average” in the ordinary sense. In spite of this, the adop{periments considered here.
tion of transition elements revealed its usefulness dealing Let us assume that the action integ&il describing the
with several problems: some cases of applications of thislevelopment of a system in the presence of dissipative ef-
kind to the problems that we are considering have been reects can be written in the form
ported in the literaturé3,4].

In this work, we shall simply focus our attention on a
result valid for quadratic action integrals that can be viewed S/ :S+f f(t)x(t)dt, 1)
as a starting point for an alternative, original model for tun-
neling and classically allowed processes, within the limit of
high frequencies. This approach enables us to take into ac-. ) ) ) o
count dissipative effects, which are always present at th&ith S being an undisturbed quadratic action integfgt)
macroscopic level, and to provide a tool for interpreting the@ny arbitrary function of the time, and(t) a path. In accor- -
frequency dependency of delay-time results of previouslydance with a phenomenological approach to the dissipative
performed experiments that involve microwave propagatioreffects[10], we can identifyf (t) = »x(t), »=2ma being the
in the near field with two horn antennfk,5]. The problem  dissipative constant “the mass of the particle,” ana the
we are addressing is not that of macroscopic quantum turdissipative parameter entering the telegrapher’s equiipn
neling, but rather that of wave equations with dissipafi®h The transition element &' — S is defined[2] as
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= L exp{ (l/ﬁ){SJff f(H)x(t)dt ]Dx(t) (2)  Let us now evaluate the first-functional derivative of the ac-
tion S, with respect tof (t) by applying Eq.(7.25 of Ref.
. , 2]
= (X (i/)(Sy— S THD)s. @ U
where the symboDx(t) means that we are dealing with a O d oL =i = 9L (9)
functional integration. EquatiofB) is obtained as a conse- Sty dt 55 ' of
quence ofS being a quadratic form(1)s means the propa-
gator fromx, to x,,, that is,fﬁbexr[(i/ﬁ)S]Dx(t), assuming 1af — 1.
the initial and the final wave functions as Diraé¢x) func- 7 X:XJF e (10)
tions. Our goal is to evaluate the transition element of the —
trajectoryx(t), from which we can obtain the traversal time X
by dividing by the velocity. By differentiating Eq3) with _ _ _ _ . _
respect tof (t), we obtain[Eq. (7.69 in Ref.[2]] The first term in Eq.(9) is zero with £L=nxx being

the Lagrangian that accounts for the dissipative effects.
(D)0 ;S(*a NE-S(1),  (4) By differentiating Eq. (6), we have x=e™ "'[cos{ot)

t) —(ia/w)sin(wt)] and we obtain
where the symbob means that we are considering a func- X L
tional derivative. In the following development of the work, — = —owtanwt)—ia. (11

the transition elemengx(t)el/M/TOXMdY i pe denoted X

Witlh <.X> foh slimplicityhof notatic:n. b I This analysis holds for small displacements from the clas-
tis well known that tunneling processes may be well g path, that is, in the limit of -0 and, in any case, we

d_escrl_bed by means ofa classm_al equatlon of motion, Wh!c?mve to satisfy the stationary conditiai(S,,— S,;)=0. By
visualizes the motion as occurring in an inverted potential. s :
differentiating Eq.(8) and equating to zero,

and in imaginary time. The equation of motion is then de-
duced from that of a damped harmonic oscillator, to which

2
we can assimilate our case taking the telegrapher’s equation d(S),—S.) = miay
C

. . : 2 t t
as basis of our analysis ar®lto be quadrati¢6]. However, [ wsin(wt)cogwt)
in view of the forbidden character of the process, the analyti- 5 .
cal continuation into a complex plane has been considered. —2iasir’(wt)]e ?a=0, (12
This continuation can also be obtained by replacing the
damping parametea with ia [7]. The equation of motion e obtain tanft) = —iw/a, which, by substituting into Eq.
becomes {(is now rea) (11), gives
X(t)+ 2iax(t) + x(t)=0, (5) 5S, — ia —
=X—= X. 13
ST X g 13

which is easily integrated with the boundary conditions

X(0)=0 andx(0)=v, thus obtaining We now have the means to deepen our understanding of the

ways, in which the transition elementxthanges with time.
X(t)=e ~iat Y sm(wt) (6) By making use of Eq(8), within the limit of high values

of w, the exponential functiog (S~ Se)’* in Eq. (4) can be
_ developed in a power series limiting to the first-order term.
with w=\/w3+a% Equation (6) represents the classical Then, by using the identificatioi¥], mc/#« o, we obtain
path.
Variation in the action may be computed by working out 58S,
the integration overtime from the initial instant0 to the (x)= ( flt )
final instantt: (Mo

2
1—gv—zsin2(z)t)e‘2iat (1)s, (19
o C

) (S where, we recall{1)g stands for the propagator. By making
Se1— Ser= ﬂfOX(S)X(S)dS- (1) use now of Eq(13), and by taking the average value of the
function sir’(wt)=0.5, for the real part of the transition ele-
By taking into account Eq(6), we have ment ofX, we obtain

067604-2



BRIEF REPORTS PHYSICAL REVIEW B6, 067604 (2002

0.05 60

50 F

004 E I
> Z 4oF !
z 2 0F /’T_\\
2 003 £ oof . 1] ‘I—’L
B /1 3 °F yeEg! 1
2 £ ok I
5 002 J 0.20: /
1 10f $
0.01 l E %
0 5 10 15 20 25
e barrior width (um)

barri idth . .
arier widih (om) FIG. 2. Traversal{or phasg¢ time results as a function of the

FIG. 1. Traversal{or phasg time results as a function of the 9ap widthL between the two fused silica prisms in the case of the
gap widthL between the two paraffin prisms in the case of thefrustrated total internal reflection experiment at the optical scale
frustrated total internal reflection experiment at the microwave scaldith a beam at 3.3%m after Ref.[9]. The continuous curve is
with a beam at 9.33 GHz after Rdfl2]. The continuous curve is deduced from Eqg.(16), with a dissipative parametera
deduced from Eq(16), with a dissipative parameter=59 ns'!, ~ =0.050 fs'*, and a propagator value of 1.
and a propagator value of 0.5.

frequency and oscillates between luminal and superluminal

- |— —a v? — a? v? behavior11]. The curves reported in Fig. 2 of Réll] were
Re(x)= X=X~ gcos{Zat)—xm gsm(Zat) obtained by calculating the expressior- tos(2rvL/v)+A,
@ ol@ derived from Eq.(16), by assumingL/v=1.8 ns, a=w/2

X(1)g. (159 =14-22 (ns)?!, (1)s=1, and A=1-1.5ns, which ac-

counts for the off zero due to the travel in the two horns. In
Under the same assumption as before, that is of high vathis way, we obtained a reasonable description of the data.
ues of w, we can disregard the last term a%/»® in the The relation derived above, namely, E#6), is also able
square brackets of E4L5) and pass to time by dividing by O Interpret delay-time results as a function of the barrier
the velocitys. We thus obtain an expression for the real partVidth in tunneling systems. Here as follows, we refer to ex-
of the transition element of the time—which can be inter-P€riments of frustrated total internal reflection that have been
preted as real traversal time—naméBg. (6) in Ref. [1]], performed in both _the micr_owave rang@vavelength, \
=3 cm), and the visible region\(=3.39 um), where su-
L a [v)2 L pgrluminal behavi.or was de_monstrated. The resylts were _ob—
Re(t)=—|1— _~<_) cos( 2a—| |(1)s, (16)  tained by measuring the shift of a beam traversing a barrier,
v 2w \C v in the first case, of a few centimeters between two paraffin
prisms, while total reflection takes place in the first prism
where we have identified with L/v, L being the barrier and evanescent waves originate in the gigj. In the second
width. case, fused silica prisms were employed, and the gap was
The propagatot1)s can be related to the attenuation of varied up to 25um[9]. Previously, we interpreted the delay-
the waves, that is{1)s> exp(—2nL/\), N being the wave- time results by using of a stochastic approdd2]. The
length[5]. It is difficult to evaluate the propagator, and an model utilized fitted the experimental data well, allowing us
exact calculation can be performed only in a very limitedto estimate also the dissipative parame®r between
number of cases. Nevertheless, the effect introduced is rath80—35 ns ' in the microwave case. In Ref13], a slightly
moderate. The resemblance of the result expressed by Edifferent stochastic approach, one that is derived from a
(16) to the one obtained in the stochastic apprd@ihis now  Brownian-motion scheme, is described. Within that frame-
evident, since in this latter case, we obtained, in its simplifiedvork, delay-time measurements relative to frustrated total
version, the expression R [ 1— cos(Aal/v)]. internal reflection experiments, in both the microwave and
Now, we intend to demonstrate that the model developedisible regions were interpreted. A plausible description of
above is suitable for interpreting some of the available exthe trajectories inside the gap was also given.
perimental results. First, we have considered the frequency Noting the similarity of the relation previously derived for
dependence of the delay-time results of an experiment inthe real part of the transition element of time to the one
volving microwave propagation in the near-field region usingderived in the simplified stochastic model appro&gh we
two horn antennas. For the special type of waves involveditted delay-time results, as a function of the gap width,
(complex wavek this can be considered a case of pseudothrough Eq.(16) usinga and the propagator valud)s as
tunneling[5]. In Ref.[1], we reported a complete account of adjustable parameters. The velocity entering Bd) was
delay measurements as a function of the frequency pegiven byv=c/\/n?sirfii—1, in the microwave case, being
formed by means of an experimental setup analogous to thie light velocity in vacuum, anidthe incidence anglgL2].
one of Ref.[5]. The results showed an evident undulatingFigure 1 shows the experimental traversal-time results
shape with a periodicity that is almost independent of the(circles with error barsas a function of the gap width
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between the two paraffin prismsi€1.49), withi=60° as  obtained by the theoretical model far=0.050 fs'*, (1)g
incidence angle. The critical angle ig=42°, and \ =1, gave a rather good description of the experimental data.
=3 cm. The curve(solid line) obtained by the theoretical It seems, therefore, that the transition-element analysis
model fora=59 ns'! and a propagator valuél)s=0.5, adopted makes it possible to achieve an interpretation of the
which corresponded to a moderate attenuation, provided experimental results of delay time, in both allowédee
reasonable description of the data. propagation in the near-field limit]) and forbidder(tunnel-

At the optical scale, we adopted an evaluation for theing) processes, alternative to and even better than the former
velocity that was derived from Edq2) of Ref.[9], thus al- ones, even if in one sense, the present approach is leading
lowing it to vary within the 0.6c—2.3c randé4]. Figure 2  again to the same kind of processes, namely, the stochastic
shows the results relative to the optical experiment of Refones. This appears to be a promising result, which deserves
[9], with A=3.39 um, n=1.409, and the incidence angle further investigations in an attempt to attain a deeper under-
=45.5°, close to the critical angle=45.21°. The curve standing of these complex phenomena.
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