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Anomalous delay in wave propagation and tunneling:
A transition-elements analysis of the traversal time
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An alternative model for near-field propagation and optical tunneling is proposed following the lines of the
path-integral method developed by Feynman, and in particular by using a transition-elements analysis. Such a
model was able to account for the frequency dependency of delay-time results of an experiment involving
microwave propagation in the near field using two horn antennas@A. Ranfagniet al., Phys. Rev. E66, 036111
~2002!#. Furthermore, this approach is also capable of interpreting delay-time results as a function of the barrier
width in a frustrated total internal reflection experiment performed at the microwave scale and in the optical
region.
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In a previous paper@1#, we reported on anomalous dela
time results in a microwave propagation experiment, wh
demonstrated a superluminal behavior strongly dependen
the frequency. These results were interpreted in the fra
work of a stochastic model and, in particular, according t
transition-elements analysis whose results were anticip
as Eq.~6! in Ref. @1#. The purpose of this work is to elucidat
the attainment of such result and to demonstrate its capab
of interpreting other traversal-time data as the ones obta
in tunneling experiments.

First, let us briefly recall the concept of transition el
ments. Feynman and Hibbs@2# introduced the transition ele
ments with a general type of notation, and developed in
esting relations between them: some of these relations,
stated, might well serve to generalize some laws of quan
mechanics. As noticed in Ref.@2#, ‘‘it is difficult to under-
stand transition elements on the level of intuitive physic
The simplest way is to consider them as weighted avera
where the weighting function exp(iS/\), Sbeing the action, is
a complex quantity, so the result too is complex, and it is
an ‘‘average’’ in the ordinary sense. In spite of this, the ad
tion of transition elements revealed its usefulness dea
with several problems: some cases of applications of
kind to the problems that we are considering have been
ported in the literature@3,4#.

In this work, we shall simply focus our attention on
result valid for quadratic action integrals that can be view
as a starting point for an alternative, original model for tu
neling and classically allowed processes, within the limit
high frequencies. This approach enables us to take into
count dissipative effects, which are always present at
macroscopic level, and to provide a tool for interpreting t
frequency dependency of delay-time results of previou
performed experiments that involve microwave propagat
in the near field with two horn antennas@1,5#. The problem
we are addressing is not that of macroscopic quantum
neling, but rather that of wave equations with dissipation@6#,
1063-651X/2002/66~6!/067604~4!/$20.00 66 0676
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whose connection with quantum-mechanical equations
been well established@7#. We have to note, however, tha
when we say ‘‘dissipation’’ in tunneling—but also in nea
field situations—we are not dealing with a true dissipatio
but rather with an imaginary quantity introduced in order
obtain the analytical continuation of the wave equation~see
below!.

In the following, we derive an expression for the real p
of the transition element of the time, which can be int
preted as the traversal-time duration. Indeed, we recove
expression, which is very similar to the one already obtain
by a stochastic approach to the problem@8#. An approach,
which supplies for the delay time a complex quantity, t
real part of which is directly related to the measuremen
while the imaginary part is an ‘‘apparent time,’’ which can b
related to the attenuation of the waves, corresponding
semiclassical evaluations@9#. On this basis, a plausible inter
pretation was given of delay-time results in near-field pro
gation as a function of frequency@1# and barrier width in
microwave and optical frustrated total internal reflection e
periments considered here.

Let us assume that the action integralS8 describing the
development of a system in the presence of dissipative
fects can be written in the form

S85S1E f ~ t !x~ t !dt, ~1!

with S being an undisturbed quadratic action integral,f (t)
any arbitrary function of the time, andx(t) a path. In accor-
dance with a phenomenological approach to the dissipa
effects@10#, we can identifyf (t)5h ẋ(t), h52ma being the
dissipative constant,m ‘‘the mass of the particle,’’ anda the
dissipative parameter entering the telegrapher’s equation@6#.

The transition element ofS82S is defined@2# as
©2002 The American Physical Society04-1
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K expF ~ i /\!E f ~ t !x~ t !dtG L
5E

a

b

expH ~ i /\!FS1E f ~ t !x~ t !dtG JDx~ t ! ~2!

5$exp@~ i /\!~Scl8 2Scl!#%^1&S , ~3!

where the symbolDx(t) means that we are dealing with
functional integration. Equation~3! is obtained as a conse
quence ofS being a quadratic form,̂1&S means the propa
gator fromxa to xb , that is,*xa

xbexp@(i/\)S#Dx(t), assuming

the initial and the final wave functions as Diracd(x) func-
tions. Our goal is to evaluate the transition element of
trajectoryx(t), from which we can obtain the traversal tim
by dividing by the velocity. By differentiating Eq.~3! with
respect tof (t), we obtain@Eq. ~7.69! in Ref. @2##

^x~ t !e( i /\)* f (t)x(t)dt&5
dScl8

d f ~ t !
e( i /\)(Scl8 2Scl)^1&S , ~4!

where the symbold means that we are considering a fun
tional derivative. In the following development of the wor
the transition element̂x(t)e( i /\)* f (t)x(t)dt& will be denoted
with ^x̃& for simplicity of notation.

It is well known that tunneling processes may be w
described by means of a classical equation of motion, wh
visualizes the motion as occurring in an inverted poten
and in imaginary time. The equation of motion is then d
duced from that of a damped harmonic oscillator, to wh
we can assimilate our case taking the telegrapher’s equa
as basis of our analysis andS to be quadratic@6#. However,
in view of the forbidden character of the process, the anal
cal continuation into a complex plane has been conside
This continuation can also be obtained by replacing
damping parametera with ia @7#. The equation of motion
becomes (t is now real!

ẍ~ t !12iaẋ~ t !1v0
2x~ t !50, ~5!

which is easily integrated with the boundary conditio
x(0)50 andẋ(0)5v, thus obtaining

x̄~ t !5e2 iat
v

ṽ
sin~ṽt ! ~6!

with ṽ5Av0
21a2. Equation ~6! represents the classica

path.
Variation in the action may be computed by working o

the integration overtime from the initial instantt50 to the
final instantt:

Scl8 2Scl5hE
0

t

x̄~s! ẋ̄~s!ds. ~7!

By taking into account Eq.~6!, we have
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Scl8 2Scl5
miav2

ṽ2
sin2~ṽt !e22iat. ~8!

Let us now evaluate the first-functional derivative of the a
tion Scl8 with respect tof (t) by applying Eq.~7.25! of Ref.
@2#:

dScl8

d f ~ t !
52

d

dt

]L
] ḟ

1
]L
] f

~9!

5
1

h

]L
] ẋ

5 x̄1
1

] ẋ

]x

ẋ̄. ~10!

The first term in Eq. ~9! is zero with L5hxẋ being
the Lagrangian that accounts for the dissipative effe

By differentiating Eq. ~6!, we have ẋ̄5e2 iatv@cos(ṽt)
2(ia/ṽ)sin(ṽt)# and we obtain

] ẋ

]x
52ṽtan~ṽt !2 ia. ~11!

This analysis holds for small displacements from the cl
sical path, that is, in the limit off→0 and, in any case, we
have to satisfy the stationary conditiond(Scl8 2Scl)50. By
differentiating Eq.~8! and equating to zero,

d~Scl8 2Scl!5
miav2

ṽ2
@2ṽsin~ṽt !cos~ṽt !

22iasin2~ṽt !#e22iat50, ~12!

we obtain tan(ṽt)52 i ṽ/a, which, by substituting into Eq.
~11!, gives

dScl8

d f ~ t !
5 x̄2

ia

ṽ22a2
ẋ̄. ~13!

We now have the means to deepen our understanding o
ways, in which the transition element ofx changes with time.

By making use of Eq.~8!, within the limit of high values

of ṽ, the exponential functionei (Scl8 2Scl)/\ in Eq. ~4! can be
developed in a power series limiting to the first-order ter
Then, by using the identification@7#, mc2/\↔ṽ, we obtain

^ x̃&.S dScl8

d f ~ t ! D
f→0

F12
a

ṽ

v2

c2
sin2~ṽt !e22iatG ^1&S , ~14!

where, we recall,̂1&S stands for the propagator. By makin
use now of Eq.~13!, and by taking the average value of th

function sin2(ṽt)50.5, for the real part of the transition ele
ment of x̃, we obtain
4-2
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Rê x̃&.F x̄2 x̄
a

2ṽ

v2

c2
cos~2at!2 ẋ̄

a2

2ṽ~ṽ22a2!

v2

c2
sin~2at!G

3^1&S . ~15!

Under the same assumption as before, that is of high
ues of ṽ, we can disregard the last term} a2/v3 in the
square brackets of Eq.~15! and pass to time by dividing by
the velocityv. We thus obtain an expression for the real p
of the transition element of the time—which can be int
preted as real traversal time—namely@Eq. ~6! in Ref. @1##,

Rê t&.
L

v F12
a

2ṽ
S v

cD 2

cosS 2a
L

v D G ^1&S , ~16!

where we have identifiedt with L/v, L being the barrier
width.

The propagator̂1&S can be related to the attenuation
the waves, that is,̂1&S} exp(22pL/l), l being the wave-
length @5#. It is difficult to evaluate the propagator, and a
exact calculation can be performed only in a very limit
number of cases. Nevertheless, the effect introduced is ra
moderate. The resemblance of the result expressed by
~16! to the one obtained in the stochastic approach@8# is now
evident, since in this latter case, we obtained, in its simplifi
version, the expression Re^t& } @12cos(2aL/v)#.

Now, we intend to demonstrate that the model develo
above is suitable for interpreting some of the available
perimental results. First, we have considered the freque
dependence of the delay-time results of an experiment
volving microwave propagation in the near-field region us
two horn antennas. For the special type of waves invol
~complex waves!, this can be considered a case of pseu
tunneling@5#. In Ref. @1#, we reported a complete account
delay measurements as a function of the frequency
formed by means of an experimental setup analogous to
one of Ref.@5#. The results showed an evident undulati
shape with a periodicity that is almost independent of

FIG. 1. Traversal-~or phase! time results as a function of th
gap width L between the two paraffin prisms in the case of t
frustrated total internal reflection experiment at the microwave s
with a beam at 9.33 GHz after Ref.@12#. The continuous curve is
deduced from Eq.~16!, with a dissipative parametera559 ns21,
and a propagator value of 0.5.
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frequency and oscillates between luminal and superlum
behavior@11#. The curves reported in Fig. 2 of Ref.@1# were
obtained by calculating the expression 12cos(2pnL/v)1A,
derived from Eq.~16!, by assumingL/v51.8 ns, a.v/2
514–22 (ns)21, ^1&S.1, and A.1 –1.5 ns, which ac-
counts for the off zero due to the travel in the two horns.
this way, we obtained a reasonable description of the da

The relation derived above, namely, Eq.~16!, is also able
to interpret delay-time results as a function of the barr
width in tunneling systems. Here as follows, we refer to e
periments of frustrated total internal reflection that have b
performed in both the microwave range~wavelength,l
.3 cm), and the visible region (l53.39mm), where su-
perluminal behavior was demonstrated. The results were
tained by measuring the shift of a beam traversing a bar
in the first case, of a few centimeters between two para
prisms, while total reflection takes place in the first pris
and evanescent waves originate in the gap@12#. In the second
case, fused silica prisms were employed, and the gap
varied up to 25mm @9#. Previously, we interpreted the delay
time results by using of a stochastic approach@12#. The
model utilized fitted the experimental data well, allowing
to estimate also the dissipative parametera, between
30–35 ns21 in the microwave case. In Ref.@13#, a slightly
different stochastic approach, one that is derived from
Brownian-motion scheme, is described. Within that fram
work, delay-time measurements relative to frustrated to
internal reflection experiments, in both the microwave a
visible regions were interpreted. A plausible description
the trajectories inside the gap was also given.

Noting the similarity of the relation previously derived fo
the real part of the transition element of time to the o
derived in the simplified stochastic model approach@8#, we
fitted delay-time results, as a function of the gap wid
through Eq.~16! using a and the propagator valuê1&S as
adjustable parameters. The velocity entering Eq.~16! was
given byv5c/An2sin2i21, in the microwave case,c being
the light velocity in vacuum, andi the incidence angle@12#.
Figure 1 shows the experimental traversal-time res
~circles with error bars! as a function of the gap width

le

FIG. 2. Traversal-~or phase! time results as a function of the
gap widthL between the two fused silica prisms in the case of
frustrated total internal reflection experiment at the optical sc
with a beam at 3.39mm after Ref.@9#. The continuous curve is
deduced from Eq. ~16!, with a dissipative parametera
50.050 fs21, and a propagator value of 1.
4-3
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between the two paraffin prisms (n51.49), with i 560° as
incidence angle. The critical angle isi c542°, and l
.3 cm. The curve~solid line! obtained by the theoretica
model for a559 ns21 and a propagator valuê1&S50.5,
which corresponded to a moderate attenuation, provide
reasonable description of the data.

At the optical scale, we adopted an evaluation for
velocity that was derived from Eq.~2! of Ref. @9#, thus al-
lowing it to vary within the 0.6c–2.3c range@14#. Figure 2
shows the results relative to the optical experiment of R
@9#, with l53.39mm, n51.409, and the incidence anglei
545.5°, close to the critical anglei c545.21°. The curve
-

e

ti,

hy
.
-
a
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obtained by the theoretical model fora50.050 fs21, ^1&S
51, gave a rather good description of the experimental d

It seems, therefore, that the transition-element anal
adopted makes it possible to achieve an interpretation of
experimental results of delay time, in both allowed~free
propagation in the near-field limit@1#! and forbidden~tunnel-
ing! processes, alternative to and even better than the for
ones, even if in one sense, the present approach is lea
again to the same kind of processes, namely, the stoch
ones. This appears to be a promising result, which dese
further investigations in an attempt to attain a deeper und
standing of these complex phenomena.
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